Polycrystal Simulations Investigating the Effect of Additional Slip System Availability in a 6063 Aluminum Alloy at Elevated Temperature
نویسندگان
چکیده
In order to better understand and predict the intragrain heterogeneous deformation in a 6063 aluminum alloy deformed at an elevated temperature, when additional slip systems beyond the usual octahedral slip systems are active, a modeling framework for analyzing representative polycrystals under these conditions is presented. A model polycrystal that has a similar microstructure to that observed in the material under consideration is modeled with a finite element analysis. A large number of elements per grain (more than 1000) are used to capture well the intragranular heterogeneous response. The polycrystal model is analyzed with three different sets of initial orientations. A compression test is used to calibrate the material model, and a macroscale simulation of the compression test is used to define the deformation history applied to the model polycrystal. In order to reduce boundary condition effects, periodic boundary conditions are applied to the model polycrystal. To investigate the effect of additional slip systems expected to be active at elevated temperatures, the results considering only the 12 {111} 110 slip systems are compared to the results with the additional 12 {110} 110 and {001} 110 slip systems available (i.e., 24 available slip systems). The resulting predicted grain structure and texture are compared to the experimentally observed grain structure and texture in the 6063 aluminum alloy compression sample as well as to the available data in the literature, and the intragranular misorientations are studied. DOI: 10.1115/1.2884338
منابع مشابه
CORROSION BEHAVIOR OF 6063 ALUMINUM ALLOY IN ETHYLENE GLYCOL-WATER SOLUTION
The electrochemical behavior of 6063 aluminum alloy in ethylene glycol-water mixture was investigated by polarization curves and AC impedance measurements (EIS). The results obtained from polarization curves showed that corrosion rate decreased with increasing ethylene glycol concentration. EIS data showed the decrease in the interface capacitance which caused by adsorption of ethylene glycol ...
متن کاملEffect of Die Entry Angle on Extrusion Responses of Aluminum 6063 Alloy
Mechanical properties response of extruded 6063 aluminum alloy at varied die entry angle has been investigated. Plain carbon and tool steel dies with entry angles of 15, 30, 45, 60, 75 and 90 were simulated. Extrusion on the alloy was done at ambient temperature (37C) and the extruded samples from the various angles were subjected to selected service related mechanical tests and microstructural...
متن کاملEFFECTS OF ELEVATED TEMPERATURE ON MECHANICAL BEHAVIOR OF AN ALUMINUM METAL MATRIX COMPOSITE
Effects of temperature on properties and behavior of a 20 vol % particulate SiC reinforced 6061 aluminum alloy and 6061 unreinforced Al alloy were investigated. Yield strength and elongation to failure were measured as a function of test temperatures up to 180^oC. In addition, the effects of holding time at 180^ oC on tensile properties and fracture mechanisms of the materials at this temperatu...
متن کاملApplication of T-shape Friction T test for Ti-6Al-4V Alloy at Elevated Temperatures
There are several parameters that have significant influence in metal forming process. One of the most important of them is friction coefficient. Friction can change the pattern of metal flow and the force needed for deformation. It is necessary to determine the friction coefficient to study the effect of friction on metal forming process. This study is concerned with numerical and experimental...
متن کاملTemperature Effect on Creep and Fracture Behaviors of Nano-SiO2-composite and AlSi12Cu3Ni2MgFe Aluminum Alloy
In the presented article, the temperature effect was studied on creep properties and fracture behaviors of AlSi12Cu3Ni2MgFe aluminum-silicon alloys, unreinforced and reinforced with SiO2 nano-particles. For such objective, standard specimens were fabricated by gravity casting and stir-casting methods, for aluminum alloys and nano-composites, respectively. Then, force-controlled creep...
متن کامل